

SPECIFICATION

1.4 Package Dimension

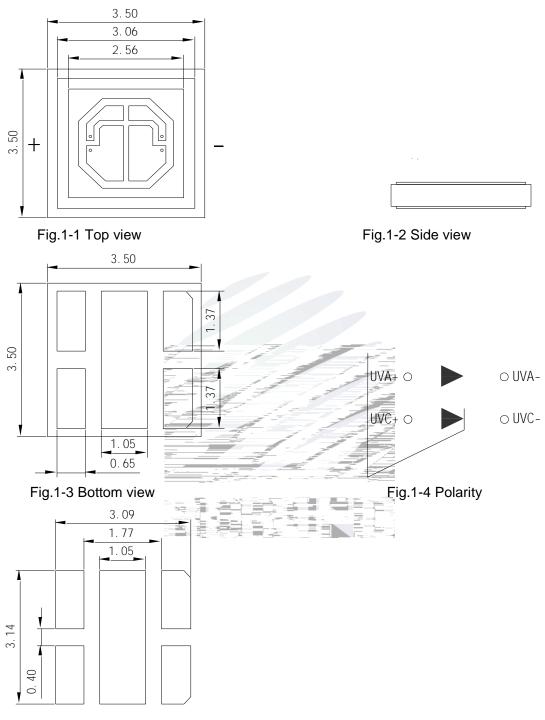


Fig.1-5 Soldering patterns

Notes

- 1. All dimensions units are millimeters.
- 2. All dimensions tolerances are ± 0.2 mm unless otherwise noted.

0.2

1.5 Product Parameters

Table 1-1 Electrical / Optical Characteristics at Ts=25°C

Item	Colour Symbol		Test	Code		Value		
1.6	o o i o a i	- Cymise.	Condition	0000	Min.	Тур	Max.	Unit
				F02	4.5		5.5	
	UVC	VF	I _F =100mA	F03	5.5		6.5	
Forward Voltage				F04	6.5		7.5	V
				B11	3.0		3.2	V
	UVA	VF	I _F =20mA	B12	3.2	3.3	3.4	
				B13	3.4		3.6	
Reverse Current	UVC/A	lr	V _R =10V				5	uA
	UVC		I=100mA	1J03	6	10	10	
	0,0	е	TF=TOOTIIA	_1J04	10		15	
Total radiant flux				1B16	9		11.2	mW
()	UVA e	e	e IF=20mA	1B17	11.2	12	14	11100
	OVA	e		1B18	14		18	
				1B19	18		22.4	
De ale consular esta	UVC		I _F =100mA	UA35	270		275	
Peak wavelength ()	OVC		IF=TOOTIIA	UA36	275		280	nm
, ,	UVA		I=20mA	UA60	390	396	400	
Spectrum Half width ()	UVC/A		I _F =20mA		8	10	12	nm
Viewing Angle	UVC/A		I=20mA			120		deg
Thermal Resistance.	UVC/A	R тнJ-s	I=20mA			45		°C/W

Table 1-2 Absolute Maximum Ratings at Ts=25°C

Parameter	Symbol	Rating	Units	
Maximum Power Dissipation	P _D	1.14	W	
Peak Forward Current	leb	UVC:120	mA	
	IFP	UVA:40		
Reverse Voltage	Vr	10	V	
Electrostatic Discharge (HBM)	Esp	1000	V	
Operating Temperature	Topr	-40 ~ +45	$^{\circ}$ C	
Storage Temperature	Topr	-20 ~ +65	$^{\circ}\! C$	
Junction Temperature		60	$^{\circ}\!$	

Notes

4	4/40 Dute	0 4		المام :، ، ،	= 0 1 inn n	- 4/40
1	1/10 Duty cycle	UIMS	DHISE	width <	0.1ms.	1/10
٠.	17 10 Daty Cyclo	, 0	Paico	WIGHT	0.11110,	1/10

- 2. The above forward voltage measurement allowance tolerance is ±0.1V.
- 3. The above wavelenth measurement allowance tolerance is ±2nm.

± 2nm.

- 4. The above radiation flux measurement allowance tolerance ±10%.
- 5. Care is to be taken that power dissipation does not exceed the absolute maximum rating of the product.
- 6. All measurements were made under the standardized environment of Refond.
- 7. When the LEDs are in operation the maximum current should be decided after measuring the package temperature, junction temperature should not exceed the maximum rate. LED
- 8. ESD yield is over 90% at 1000V ESD (HBM). ESD protection during products handing is needed. 90% LED ESD 1000V ,

1.6 Typical optical characteristics curves

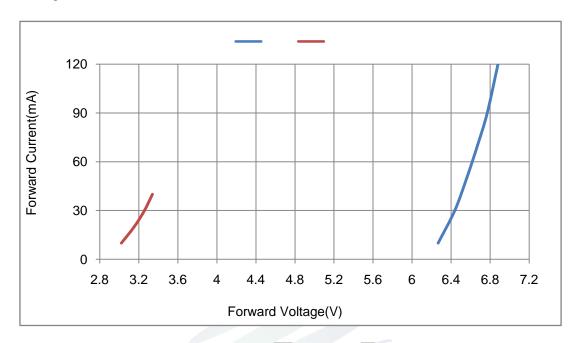


Fig.1- Forward Voltage Vs. Forward Current

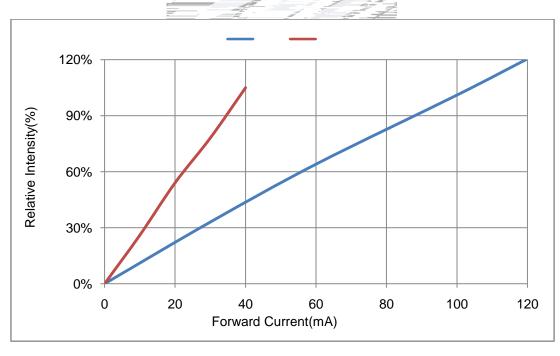


Fig.2- Forward Current Vs. Relative Power



Fig.3-Ts Temperature VS. Forward Current

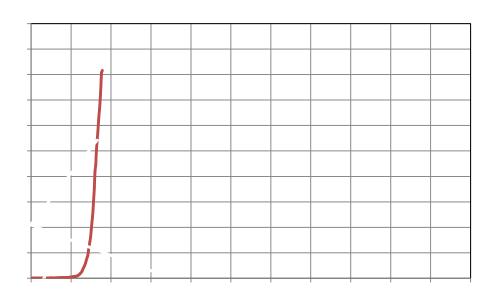
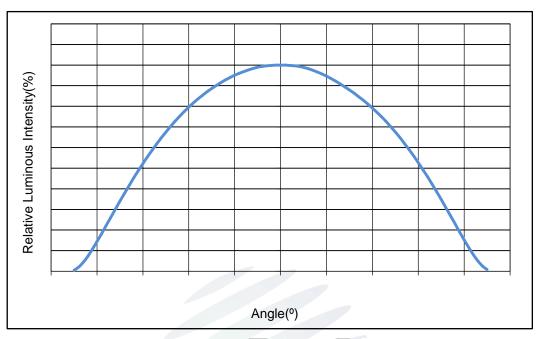
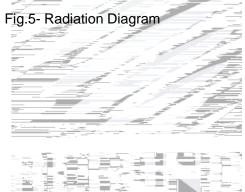




Fig.4-Spectrum Distribution

2. Packaging

2.1 Packaging Specification

Package:1000pcs/reel.

2.1.1 Carrier Tape Dimension

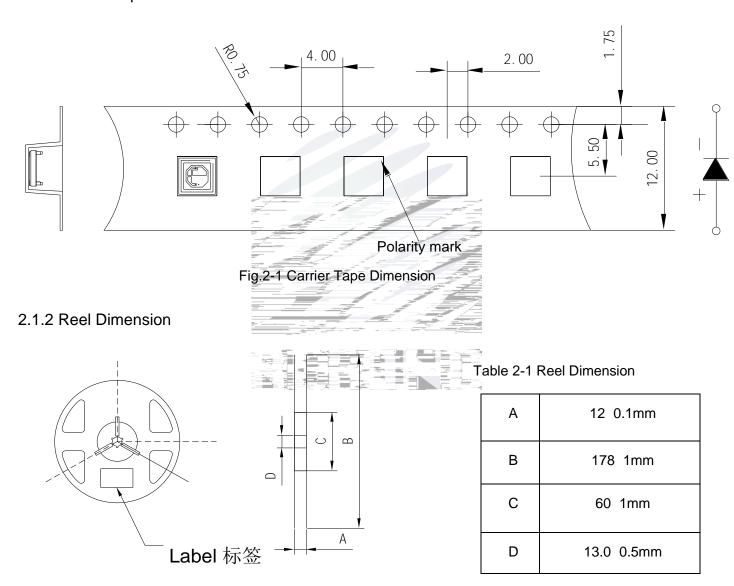


Fig.2-2 Reel Dimension

Notes

The tolerances unless mentioned ±0.1mm. Unit: mm

1

2.1.3 Label Form Specification

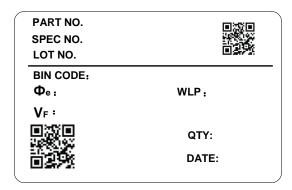
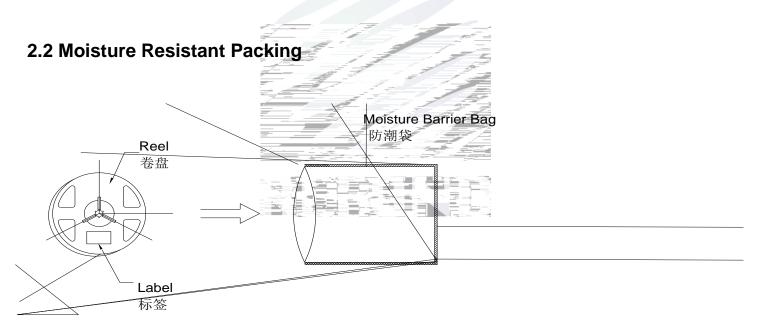
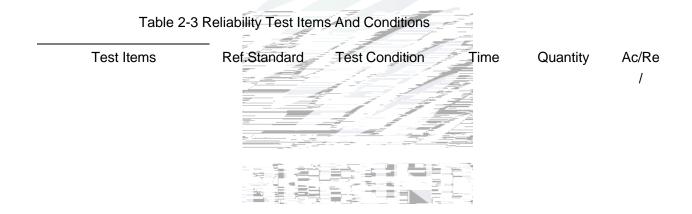


Fig. 2-3 Label Form Specification

Table 2-2 Label Form Specification

PART NO.	Part Number	
SPEC NO.	Spec Number	
LOT NO.	Lot Number	
BIN CODE	Bin Code	
е	Radiation flux	
VF	Forward Voltage	
WLP	Wavelength	
QTY	Packing Quantity	
DATE	Made Date	




Fig.2-4 Moisture Resistant Packing Process

2.3 Cardboard Box

Fig.2-5 Cardboard Box

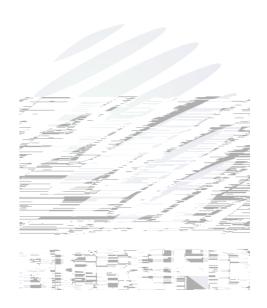
2.4 Reliability Test Items And Conditions

2.5 Criteria For Judging Damage

Table 2-4 Criteria For Judging Damage

Test Items	Symbol	Test Condition	Criteria For Judgement		
			Min.	Max.	
Forward Voltage	VF	I _F =20mA /100mA	-	U.S.L*)x1.1	
Reverse Current	lR	V _R = 10V	-	U.S.L*)x2.0	
Total radiant flux	е	I _F =20mA /100mA	L.S.L*)x0.7	-	

Notes


1.U.S.L: Upper standard level

L.S.L: Lower standard level

2. The above reliability tests is based on the verification of a single/strip LED of Refond's existing experimental platform, the reliability experiment was taken under good heat dissipation conditions. when customers applies the LED to the series and parallel circuit, should take consideration of all the factors such as the current, voltage distribution, heat dissipation and others.

LED

3. The technical information shown in the data sheets is limited to the typical characteristics and circuit examples of the referenced products. It does not constitute the warranting of industrial property nor the granting of any license.

N I	-4	
IN	OI	es

(1)Reflow soldering should not be done more than twice. If more than 24 hours between the two solderings , LED will be damaged.

24 LED†" è`

(2) When soldering, do not put stress on the LEDs during heating.

3.1.1 Soldering Iron

(1) When do soldering by hand, keep the temperature of iron below less 300 less than 3 seconds.

300 3

(2) Soldering by hand should be done only one time.

3.1.2 Repairing

Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed in advance whether the characteristics of LEDs will or not be damaged by repairing.

racteristics of EEDs will of flot be damaged by repairing.

LED

3.1.3 Cautions

(1) The encapsulated material of the LEDs is silicone. Therefore the LEDs have a soft surface on the top of package. The pressure to the top surface will be impacted on the reliability of the LEDs. Precautions should

LED

4. Handling Precautions

4.1 Handling Precautions

- (1) LED operating environment and sulfur element composition cannot be over 100PPM in the LEDmating usage material. This is provided for informational purposes only and is not a warranty or endorsement.LED

 100PPM.
- (2) In order to prevent ex-ternal material from getting into the inside of LED, which may cause the malfunction of LED, the single content of Bromine element is required to be less than 900PPM, the single content of Chlorine elementis required to be less than 900PPM, the total content of Bromine element and Chlorine element in the external materials of the application products is required to be less than 1500PPM. This is provided for informational purposes only and is not a warranty or endorsement.

LED 900PPM

900PPM 1500PPM.

(3) VOCs (Volatile organic compounds) emitted from materials used in the construction of fixtures can penetrate silicone encapsulants of LEDs and discolor when exposed to heat and photonic energy. The result can be a significant loss of light output from the fixture. Knowledge of the properties of the materials selected to be used in the construction of fixtures can help prevent these issues. Refond advises against theuse of any chemicals or materials that have been found or are suspected to have an adverse affect on device performance or reliability. To verifycompatibility, Refond recommends that all chemicals and materials be tested in the specific application and environment for which they are intended tobe used. Attaching LEDs, do not use adhesives that outgas organic vapor.

LED LED

LED

(4) Handle the component along the side surface by using forceps or appropriate tools; Do not directlytouch or Handle the silicone lens surface, it may damage the internal circuitry.

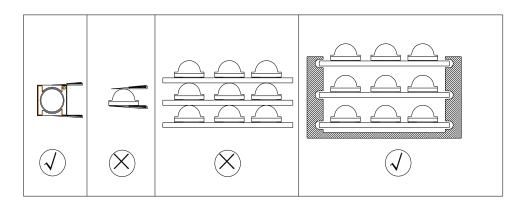


Fig 4-1 Operate Method

- (5) In designing a circuit, the current through each LED can not exceed the absolute maximum rating specified for each LED. In the meanwhile, resistors for protection should be applied, otherwise slight voltage shift will cause big current change, burn out may happen. The driving circuit must be designed to allow forward voltage only when it is ON or OFF. If the reverse voltage is applied to LED, migration can be generated resulting in LED damage.
- (6) Thermal Design is paramount importance because heat generation may result in the Characteristics decline, such as brightness decreased, lifetime, Color change and so on. Please consider the heat generation of the LEDs when making the system design. LED

LED

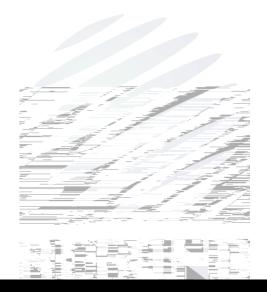
(7) Compared to standard encapsulants, silicone is generally softer, and the surface is more likely to attract dust, requiring special care during processing. In cases where a minimal level of dirt and dust particles cannot be guaranteed, a suitable cleaning solution must be applied to the surface after the soldering of components. Refond suggests using isopropyl alcohol for cleaning. In case other solvents are used, it must be assured that these solvents do not dissolve the package or resin. Ultrasonic cleaning is not recommended. Ultrasonic cleaning may cause damage to the LED.

LED

Table 4-1Storage

Conditions		Temperature	Humidity	Time
Storage	Before Opening Aluminum Bag	30	75%	Within 1 Year From Date
	After Opening Aluminum Bag	30	60%	24hours 24
Baking		60 5	-	24hours 24

(8) If the moisture absorbent material	silica gel	has faded away or the LEDs have exceeded	d the storage
time, baking treatment should be performe	d after unpa	acking and based on the following condition	65 5
for above 24 hours.		175	


60 5 24

If the package is flatulence or damaged, please notify the sales staff to assist.

- (9)Similar to most Solid state devices; LEDs are sensitive to Electro-Static Discharge (ESD) and Electrical Over Stress (EOS).
- (10) When using this product, you need to take good care to prevent it from causing harm to eyes and human body.
 - (11) Other points for attention, please refer to our relevant information.

Date	Revisor	Version	Verifier	Remarks
2020-09-20		E0		

Declare

This specification is written both in English and in Chinese and the latter is formal.